Spite vs. Risk: Explaining overbidding

Oliver Kirchkamp and Wladislaw Mill

Universität Jena

May 18, 2020

Economic exchange

- How do institutions work? How do decision makers behave in a given institution?
- Which institutions?

Buyers

	many	few
many	market	auction
few	auction	bargaining

Sellers

Overbidding in first-price auctions

James C. Cox, Vernon L. Smith, and James M. Walker. (1983). Test of a heterogeneous bidder's theory of first price auctions. *Economic Letters*, 12 (3-4).

Risk aversion \rightarrow Overbidding

• CRRA risk aversion:

$$u(x) = \frac{x^{1-\rho} - 1}{1-\rho}$$

CARA risk aversion:

$$u(x) = 1 - \frac{e^{-rx}}{r}$$

$$b^*(v) = \frac{1}{2 - \rho}v$$

Risk aversion rationalises bids in auctions.

Two auction formats

First-price winner-pay auction

- · highest bid wins
- winner pays own bid

- Risk
- Spite

:

Can one use the first-price winner-pay auction to disentangle risk and spite?

Second-price all-pay auction

- highest bid wins
- all bidders pay own bid, but not more than 2nd highest bid

(Example: competition, war of attrition, R&D,...)

- Risk
- Spite

:

Bayesian Nash Equilibria in Auctions

- Bidders maximise E(u(x|b))
- · E.g. in the first-price winner-pay auction

$$E(u(x|b)) = u(v - b) \cdot P(b = \max(b_j))$$

· Risk neutral bidders:

$$u(x) = x$$

CRRA risk aversion:

$$u(x) = \frac{x^{1-\rho} - 1}{1 - \rho}$$

 ρ =coefficient of relative risk aversion.

Risk and spite in the first-price winner-pay auction

Morgan, Steiglitz and Reis. (2003). The Spite Motive and Equilibrium Behavior in Auctions. *Contributions in Economic Analysis & Policy*, 2(1).

Payoffs with Spiteful preferences

$$\begin{split} u(x) &= x \\ \Phi^{l}_{i,\text{Spite}}(b,\nu) &= \begin{cases} u\left(\nu_i - b_i\right) & \text{if } b_i > b_k \text{ (i wins)} \\ u\left(\frac{\nu_i - b_i}{2}\right) & \text{if } b_i = b_k \text{ (a tie)} \\ u\left(-\alpha(\nu_k - b_k)\right) & \text{if } b_i < b_k \text{ (k wins)} \end{cases} \end{split}$$

ightarrow equivalence of risk and spite

Morgan et. al: Risk averse bidders with CRRA utility use the same bidding function as a spiteful (but risk neutral) bidders with spite parameter $\alpha = \frac{\rho}{1-\rho}.$

Equilibrium bids in first-price winner-pay auctions for spiteful/risk averse bidders ($\alpha = \frac{\rho}{1-\rho}$, $\rho = \frac{\alpha}{\alpha+1}$).

$$\beta_{Spite}^{I}(\nu) = \nu - \int_{0}^{\nu} \frac{F(t)^{1+\alpha}}{F(\nu)^{1+\alpha}} dt = \nu - \int_{0}^{\nu} \frac{F(t)^{1/(1-\rho)}}{F(\nu)^{1/(1-\rho)}} dt = \beta_{Risk}^{I}(\nu)$$

• Risk of losing \rightarrow reduce risk by increasing the bid.

Oliver Kirchkamp and Wladislaw Mill (Univ

• Spite of losing \rightarrow reduce spite by increasing the bid.

Two auction formats

First-price winner-pay auction

- Risk
- Spite

:

Second-price all-pay auction

- Risk
- Spite

:

Can one use the second-price all-pay auction to disentangle risk and spite?

Risk and spite in the second-price all-pay auction

Risk

CARA risk aversion:

$$u(x) = \frac{1 - e^{-r \cdot x}}{r}$$

r = coefficient of absolute risk aversion.

Spite

$$\begin{split} u(x) &= x \\ \Phi_{i,\text{Spite}}^{\text{II-AP}} &= \begin{cases} u\left(\nu_i - b_k\right) & \text{if } b_i > b_k \\ \text{(i wins)} \end{cases} \\ u\left(\frac{\nu_i}{2} - b_i\right) & \text{if } b_i = b_k \\ \text{(a tie)} \\ u\left(-b_i - \alpha(\nu_k - b_i)\right) & \text{if } b_i < b_k \\ \text{($k \neq i$ wins)} \end{cases} \end{split}$$

\rightarrow No equivalence of risk and spite

Risk and spite in second-price all-pay auctions

$$\beta_{Risk}^{\text{II-AP}}(\nu) = \int_0^{\nu} \frac{(1 - e^{-s \, r}) \, f(s)}{r(1 - F(s))} ds$$

 Risk of losing and still paying a bid → reduce risk by reducing the bid.

$$\beta_{\mathsf{Spite}}^{\mathsf{II-AP}}(\nu) = \frac{\alpha+1}{\alpha} \left(\nu - \frac{\int_0^{\nu} (1-\mathsf{F}(s))^{\frac{\alpha}{\alpha-1}} ds}{(1-\mathsf{F}(\nu))^{\frac{\alpha}{\alpha-1}}} \right)$$

- small v: bidder can't win, but can at least make the winner suffer
- large v: bidder wins almost certainly (can't make anybody suffer), but has to pay a larger price.

Two auction formats

first-price winner-pay auction

→ Both risk and spite lead to an increase in bids.

second-price all-pay auction

- Risk \rightarrow bids decrease
- Spite \rightarrow bids fist increase, then decrease

Experiment

- Elicit preferences
 - risk
 - spite
 - SVO
 - rivalry.
- Auction:
 - · either first-price winner-pay auction
 - · or second-price all-pay auction
- Payment
 - only for one randomly selected task / auction

Measuring spiteful preferences

- Marcus, Zeigler-Hill, Mercer, Norris (2014)
 - \rightarrow Questionnaire
- Kimbrough, Reiss, (2012)
 - \rightarrow Auction
- · Own measure
 - → Slider measure

Marcus, Zeigler-Hill, Mercer, Norris (2014)

The psychology of spite and the measurement of spitefulness. *Psychological Assessment*, 26(2):563-574.

- I would be willing to take a punch if it meant that someone I did not like would receive two punches.
- I would be willing to pay more for some goods and services if other people I did not like had to pay even more.
- If I was one of the last students in a classroom taking an exam and I
 noticed that the instructor looked impatient, I would be sure to take
 my time finishing the exam just to irritate him or her.
- If my neighbor complained about the appearance of my front yard, I
 would be tempted to make it look worse just to annoy him or her.
- It might be worth risking my reputation in order to spread gossip about someone I did not like.
- If I am going to my car in a crowded parking lot and it appears that another driver wants my parking space, then I will make sure to take my time pulling out of the parking space.
- I hope that elected officials are successful in their efforts to improve

Kimbrough, Reiss, (2012)

Measuring the distribution of spitefulness. *PLOS ONE*, 7(8):1–8.

Second price (winner pays) auction

- Participants supply a bid function for a second price auction with one opponent.
- Bids are determined (for randomly drawn valuations) according to the stated bid functions.
- Participants are informed about the outcome.
- Participants can increase own bids by a percentage (between 0 and 100%) of difference between winner's and loser's bid.
 - \rightarrow Increased own bids don't change the allocation. They only diminish the winner's payoff.

Interface of the bidding stage.

Interface of the feedback stage.

Interface of bid adaptation

Own measure of spitefulness.

You IA1	70	70	70	70	70	70	70	70	70 0	
Other	100	98	96	94	92	91	89	87	85	
You	70	68	65	62	60	58	55	52	50	
IA2 Other	100	96	92	89	o 85	o 81	o 78	o 74	o 70	
You	100	100	100	100	100	100	100	100	100	
RG1	0	0	0	0	0	0	0	0	0	
Other	100	98	96	94	92	91	89	87	85	
You	100	98	96	0.4	0.2	91	89	87	0.5	
	100	90	90	94	92	91	89	8/	85	
RG2	0	0	0	0	0	0	0	0	0	
RG2	0	0	0	0	0	0	0	0	0	_
RG2 Other	0 100	o 96	o 92	o 89	o 85	o 81	o 78	o 74	o 70	
RG2 Other	0 100	96 100	92 100	0 89	0 85	0 81	0 78	0 74	0 70	
RG2 Other You PS1	0 100 100 0	96 100 0	92 100 0	0 89 100 0	0 85 100 0	0 81 100 0	○ 78 100 ○	0 74 100 0	0 70 100 0	_
RG2 Other You PS1 Other	0 100 100 0 85	96 100 0 83	92 100 0 81	0 89 100 0 79	0 85 100 0 78	0 81 100 0 76	0 78 100 0 74	0 74 100 0 72	0 70 100 0 70	

Spite = sum of points (all six measures) by which other payoff is reduced.

Distribution of Measures for Spite.

Consist. within Marcus own

Consist, across all Cronbach \alpha

0.863 (CI = [0.83, 0.903])

0.707 (CI = [0.635, 0.788])

0.118 (CI = [0.0277, 0.216])

PC₁

33.2% of the varian 76.6% of the varian

Joint Distribution of Measures for Spite.

- Three different measures of spite may measure different aspects of spite.
- $\,\,
 ightarrow\,$ we take the sum of normalised values (same SD) as measure for "spite"

Other controls

Risk aversion

Holt, Laury, (2002). Risk aversion and incentive effects. *American Economic Review*, 92(5):1644–1655.

2€	1.6€	3.85€	0.1€
0.1	0.9	0.1	0.9
0.2	0.8	0.2	0.8
0.3	0.7	0.3	0.7
0.4	0.6	0.4	0.6
0.5	0.5	0.5	0.5
0.6	0.4	0.6	0.4
0.7	0.3	0.7	0.3
0.8	0.2	0.8	0.2
0.9	0.1	0.9	0.1
1.0	0.0	1.0	0.0

cor(risk/spite):r = 0.004,

Social value orientation

Murphy, Ackerman, Handgraaf, (2011). Measuring social value orientation. *Judgment* and Decision Making, 6(8):771–781.

Rivalry

Back, Küfner, Dufner, Gerlach, Rauthmann, Denissen, (2013). Narcissistic admiration and rivalry: Disentangling the bright and dark sides of narcissism. *Journal of Personality and Social Psychology*, 105(10):1013–1037.

- Most people are losers.
- 2 I am often edgy when I am criticised.
- I secretely rejoice over the failures of my opponents.
- Other people have no value.
- 5 I am annoyed when another person steals my thunder.
- 6 I want my competitors to fail.
- Most people will never amount to anything.
- 8 I can't bear when other people occupy centre stage.
- I enjoy when another person is inferior to me

Experiment

- Elicit preferences
 - risk
 - spite
 - SVO
 - rivalry.
- Auction:
 - · either first-price winner-pay auction
 - · or second-price all-pay auction
- Payment
 - only for one randomly selected task / auction

Interface of the bidding stage.

Interface of the feedback stage.

Experiment

- Elicit preferences
 - risk
 - spite
 - SVO
 - rivalry.
- Auction:
 - · either first-price winner-pay auction
 - · or second-price all-pay auction
- Payment
 - only for one randomly selected task / auction

Hypotheses

first-price winner-pay auction:

- spite \rightarrow higher bids.
- risk \rightarrow higher bids.

Second-price all-pay auction:

- risk aversion: → lower bids
- low v: spite \rightarrow higher bids high v: spite \rightarrow lower bids

Median overbidding: Theory and observations.

bids consistent with risk/spite

bids consistent with spite, not risk

Fitting bids in the first-price winner-pay auction

$$\beta_{Spite}^{I}(\nu) = \nu - \int_{0}^{\nu} \frac{F(t)^{1+\alpha}}{F(\nu)^{1+\alpha}} dt = \nu - \int_{0}^{\nu} \frac{F(t)^{1/(1-\rho)}}{F(\nu)^{1/(1-\rho)}} dt = \beta_{Risk}^{I}(\nu)$$

Trivially both spite and risk explain bids equally well.

Fitting bids in the second-price all-pay auction

$$\mathsf{Bid}_{i,t,j,\nu} = \beta_{\mathsf{II-AP}}^\mathsf{T} + \zeta_{i,j} + \eta_j + \varepsilon_{i,j,k,l}$$

- Bid_{i,t,j,v} bid of subject i in group j in period t for valuation v
- $\beta_{\text{II-AP}}^T$ theoretical bidding function with/without spite/risk.
- $\zeta_{i,j}$ random effect for bidder i in group j
- η_j random effect for group j
- $\epsilon_{i,j,k,l}$ residual

Result

Behavior in the second-price all-pay auction is significantly better described by a theory of spite but not by a theory of risk aversion.

Spite and risk in the first-price winner-pay auction

spite has "perverse" effect.

risk has "expected" effect.

Median overbidding in the second-price all-pay auction.

Overbidding for the first-price winner-pay auction

$$\begin{split} \text{Bid}_{i,t,j,\nu} - \beta^I = & \beta_0 + \beta_1 \text{Period} + \beta_2 \nu + \zeta_{i,j} + \eta_j + \varepsilon_{i,j,k,l} + C_M \\ C_1 = & 0 \\ C_2 = & \beta_3 \text{Spite}_i + \beta_4 \text{Spite}_i \times \nu \\ C_3 = & C_2 + \beta_5 \mathbb{1}_{\mathbb{Q}} + \beta_6 \text{Risk}_i + \beta_7 \text{rivalry}_i + \beta_8 \text{SVO}_i + \beta_9 \text{IA}_i \\ C_4 = & \beta_{10} \text{Risk}_i + \beta_{11} \text{Risk}_i \times \nu \\ C_5 = & C_4 + \beta_{12} \mathbb{1}_{\mathbb{Q}} + \beta_{13} \text{Spite}_i + \beta_{14} \text{rivalry}_i + \beta_{15} \text{SVO}_i + \beta_{16} \text{IA}_i \\ \zeta_{i,j} & \text{random effect for bidder i in group j} \\ & \beta_{i,j,k,l} & \text{residual} \\ & C_1 & \text{base specification} \\ & C_2, C_3 & \text{control for spite} \\ & C_4, C_5 & \text{control for risk} \end{split}$$

Estimation results for Equation (1) (overbidding for the first-price winner-pay auction).

	C_1	C_2	C_3	C_4	C_5
Period	-0.09*** (0.02)	-0.09*** (0.02)	-0.09*** (0.02)	-0.09*** (0.02)	-0.09*** (0.02)
ν	0.21*** (0.003)	0.21*** (0.003)	0.21*** (0.003)	0.21*** (0.003)	0.21*** (0.003)
Spite		0.53 (0.40)	0.33 (0.51)		-0.15 (0.50)
Spite ×v		-0.01*** (0.002)	-0.01*** (0.002)		
Risk			-0.06(0.79)	-1.46^{+} (0.80)	-1.59*(0.80)
Risk $\times \nu$				0.03*** (0.003)	0.03*** (0.003)
Male			-4.98** (1.65)		-4.98** (1.65)
Rivalry			0.86 (0.86)		0.86 (0.86)
SVO			0.04 (0.06)		0.04 (0.06)
IA			0.46 (0.63)		0.46 (0.63)
Constant	1.96 ⁺ (1.01)	1.96 ⁺ (1.02)	2.92^{+} (1.60)	1.96 ⁺ (1.02)	2.92^{+} (1.60)
Observations	17,490	17,490	17,490	17,490	17,490
Log Likelihood	-69,248.54	-69,233.82	-69,227.71	-69,200.08	-69,194.64
Akaike Inf. Crit.	138,509.10	138,483.60	138,481.40	138,416.10	138,415.30
Bayesian Inf. Crit.	138,555.70	138,545.80	138,582.40	138,478.30	138,516.30

Notes: $^+: p < 0.1; ^*: p < 0.05; ^{**}: p < 0.01; ^{***}: p < 0.001;$ Standard errors in parentheses

Results first-price winner-pay auction

- C₁ Overbidding in the first-price winner-pay auction is consistent with the theory of spiteful-agents and also with theory on risk averse agents.
- C_2, C_3 Contrary to the theoretical prediction, more spite leads to a less steep bidding slope in the first-price winner-pay auction (the interaction of Spite $\times v$ is negative and significant).
- C_4, C_5 In line with theory, more risk aversion leads to a steeper bidding slope in the first-price winner-pay auction.

Overbidding in the second-price all-pay auction

$$\begin{split} \text{Bid}_{i,t,j,\nu} - \beta^{\text{II-AP}} = & \beta_0 + \beta_1 \text{Period} + \zeta_{i,j} + \eta_j + \varepsilon_{i,j,k,l} + C_M' \\ & C_1' = & s(\nu) \\ & C_2' = & C_1' + \beta_2 \text{Spite}_i + \beta_3 \text{Spite}_i \cdot \nu_{[0,50]}(\nu) + \beta_4 \text{Spite}_i \cdot \nu_{[50,100]}(\nu) \\ & C_3' = & C_2' + \beta_5 \text{IA}_i + \beta_6 \mathbb{1}_{\mathbb{Q}} + \beta_7 \text{Risk}_i + \beta_8 \text{rivalry}_i + \beta_9 \text{SVO}_i \\ & C_4' = & C_1' + \beta_{10} \text{Risk}_i + \beta_{11} \text{Risk}_i \cdot \nu_{[0,50]}(\nu) + \beta_{12} \text{Risk}_i \cdot \nu_{[50,100]}(\nu) \\ & C_5' = & C_2' + \beta_{13} \text{IA}_i + \beta_{14} \mathbb{1}_{\mathbb{Q}} + \beta_{15} \text{Spite}_i + \beta_{16} \text{rivalry}_i + \beta_{17} \text{SVO}_i \\ & \zeta_{i,j} & \text{random effect for bidder i in group j} \\ & \zeta_{i,j,k,l} & \text{residual} \\ & s(\nu) & \text{thin plate regression spline over the valuation} \\ & \nu_{[0,50]}(\nu) & = & \min(0,\nu/50-1) \\ & \nu_{[50,100]}(\nu) & = & \max(0,\nu/50-1) \end{split}$$

Estimation results for Equation (2) (overbidding in the second-price all-pay auction).

	C' ₁	C' ₂	C' ₃	C ₄ '	C' ₅
Period	-0.40*** (0.05)	-0.40*** (0.05)	-0.40*** (0.05)	-0.40*** (0.05)	-0.40*** (0.05)
Spite		4.06* (1.69)	4.83* (1.96)		4.10* (1.95)
Spite $\times \nu_{[0,50]}$		1.49** (0.47)	1.49** (0.47)		
Spite \times $\nu_{[50,100]}$		-1.18* (0.47)	-1.18* (0.47)		
Risk			-6.02* (2.91)	-7.85* (3.08)	-7.10* (2.94)
$Risk \times \nu_{[0,50]}$				-3.48*** (0.86)	-3.48*** (0.86)
$Risk \times \nu_{[50,100]}$				0.46 (0.86)	0.46 (0.86)
Male			-19.05** (6.11)		-19.05** (6.11)
Rivalry			-0.70 (3.09)		-0.70 (3.09)
SVO			0.41^{+} (0.24)		0.41^{+} (0.24)
IA			-1.84 (2.51)		-1.84 (2.51)
Constant	14.92*** (3.15)	14.89*** (3.11)	14.83* (6.48)	14.87*** (3.10)	14.83* (6.48)
Observations	23760	23760	23760	23760	23760
Log Likelihood	-120506.69	-120499.39	-120490.12	-120493.49	-120484.68
Akaike Inf. Crit	241027.38	241018.78	241010.24	241006.97	240999.36
Bayesian Inf. Crit.	241083.91	241099.54	241131.38	241087.73	241120.5
<i>Notes:</i> $+ : p < 0.1;$	*: p < 0.05;	** : p < 0.01;	*** : p < 0.001;	. Standard errors	in parentheses

[,]

Estimation results for the spline from Equation (2) (overbidding).

 C_1, \ldots, C_5 In line with spiteful preferences, bidders bid more than the RNBNE for small valuations and, respectively, less for large

Results second-price all-pay auction

C'₂, C'₃ Bids increase in spite for low valuations and they increase less for high valuations.

 C'_4, C'_5 Increased risk aversion leads to lower bids.

Learning

Effects become stronger over the experiment.

Different measures for spite

Only Marcus et al. has expected effect.

All three measures of spite have the same (expected) effect.

Summary

First-price winner-pay auction

Second-price all-pay auction

Risk explains bidding behaviour well

Spite explains bidding behaviour well

